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Dynamics of atoms in a condensing cluster

A. ten Bosch*
Laboratoire de Physique de la Matie`re Condense´e, CNRS 6622, Parc Valrose, F-06108 Nice Cedex 2, France

~Received 7 October 2002; published 21 April 2003!

The dynamics of single particles in a cluster on condensation from the supersaturated vapor phase is studied
by a kinetic approach. An insight into the distinctive flow field in the vicinity of a cluster is obtained for initial
and late stage evolution. Inside the core the single atoms diffuse freely and the initial velocity decays rapidly
with time. In the interfacial region between the cluster core and the vapor, the surface pressure produces a
directed radial motion and a long time radial drift into the cluster core. Far from the cluster, the atoms move
in the vapor state of low density and high diffusion constant. The mean square displacement and the velocity
correlation lend support to the results and are compared with recent molecular dynamics simulations on a
nucleating argon cluster.
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I. INTRODUCTION

Many problems in materials science are concerned w
time dependent phenomena and flow@1#. Nonequilibrium
systems are particularly challenging and of great pract
interest as the path to fabricate a nanosystem often pa
through a phase transition@2#. Single particle dynamics play
a decisive role in the dynamics of a phase transition, and
theoretical framework must be derived from atomic sc
behavior and describes the evolution of microstructure
appropriate time and length scales, establishing a connec
to the corresponding macroscopic properties. A model in
pendent analytical approach can rapidly explore param
space and yield results for spatial dynamic averages@3#. It is
complementary to a numerical simulation, which produce
detailed picture of atomic processes@4–8#. Each approach
involves a series of assumptions that can be tested by a c
parative analysis. Much work, theoretical as well as exp
mental, has been expended in achieving a better compre
sion of the dynamics involved@9–14#.

The model case studied here is the aggregation of at
during condensation in the supersaturated vapor. Durin
first-order phase transition, such as condensation, the m
stable vapor develops into the stable liquid phase by nu
ation and growth processes. Atoms diffuse and combine
aggregates of different sizes, which can subsequently g
by incorporating other atoms, or shrink as atoms, are
from the surface. In the vicinity of the cluster surface, ato
arrive from the vapor and penetrate into the liquid core;
side the cluster, atoms diffuse and eventually reach the
face, and are ejected into the vapor.

The ~p,T! ensemble has been used to study the sin
atom dynamics during condensation from the vapor of a L
nard Jones cluster@15#. It was shown by the molecular dy
namics simulation that three distinct regions occur for
dynamics of single atoms, which differ inside the cluster,
the interfacial region and in the vapor phase. Far from
cluster, the atoms move in the vapor state of low density
high diffusion constant. Inside the cluster, the density is c
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stant, close to the liquid value at the density and pressur
coexistence. The atomic paths are typical of diffusive mot
with a tendency to drift towards the center and remain the
The mean square displacement is linear in time and the
fusion constant is close to the bulk liquid value at the sa
temperature. The velocity correlation decays rapidly a
vanishes after less than one time step. A striking differenc
the dynamics is found if the motion is restricted to the int
facial region where the density decays towards the va
The motion is no longer diffusive, the atomic paths a
smoother, and the circular trajectories can be observed.
single atom dynamics are indicative of directed motion n
the cluster surface and cannot be described by simple
diffusion. The mean square displacement is a nonlinear fu
tion of time, velocity correlation occurs over a long tim
scale and can be fit to exponential decay with a long an
short characteristic time.

In order to understand the fundamental basis of the ob
vations and to compare with the results of Ref.@15#, the short
and long time dynamics of particles are calculated in a n
equilibrium cluster by using the kinetic approach.

II. KINETIC APPROACH

As in molecular dynamics simulations, it is possible
pass from an atomistic picture of a single atom path to
system averaged mesoscopic analysis. In a stochastic sy
the single particle motion is not deterministic but can follo
many possible paths. An appropriate average over physic
possible paths defines the probabilityG(RW ,RW 0 ,vW ,vW 0 ,t) to
find a particle that started atRW 0 with velocity vW 0 at position
RW with velocity vW after a timet. In the case of continuous
Markov processes subject to frequent small changes, a
netic equation forG is obtained@16,17#. Calculation of the
solution of the seven-dimensional equation forG has been
possible only in a few simple cases. As was discussed in
@16#, by the calculation of the moments^vW vW¯& of G for a
fixed initial position and velocity, the time and length in
volved in the atomistic probability are increased to an exp
mentally more accessible scale. A set of differential eq
tions for the moments ofG is found by the multiplication of
the kinetic equation by thenth rank tensorvW vW vW vW¯vW and
©2003 The American Physical Society02-1
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integration in momentum space with the condition that
surface terms in momentum space vanish forvW→`. A set of
coupled differential equations, similar to hydrodynamics a
physically intuitive, is obtained for probability densit
f (RW ,t)5^1&, the average velocityj (RW ,t)5^vW &, the kinetic
tensorT(RW ,t)5^vW vW &, and so on. As will be shown, the mo
ments can be calculated and used to characterize the dy
ics of the particles of the cluster.

The differential equations become a set of linear eq
tions by the Fourier transformation. The method of solut
of Ref. @18# can be applied close to initiationt→0 and after
a long time relative to a characteristic decay timec21. For
ct!1 andct@1, the solution is simply of the formevt and
the relaxation timesv are found from the condition of van
ishing determinant of the linear system. A complete solut
is the linear combination of the solutions for each eigenf
quency and is completely determined by the initial con
tions. The boundary condition at the cluster surfaceR5a
yields terms of order!1 for sufficiently large clusters. In
Ref. @15#, the diffusive step was much shorter than the rad
of the cluster for the times considered and the size effe
related to the cluster radius are neglected.

The dynamics of atoms will be studied, which starts w
a given velocity at the center of the cluster and moves
wards the surface, or which starts on the cluster surface
moves within the interface between the condensed clu
and the supersaturated vapor. The system is expected to
idly achieve thermal equilibrium and constant temperatureT.
Close to the cluster surface, a chemical potential grad
must be considered due to the change in density from
condensed phase (nL) to the vapor (n0) and decrease in th
local interaction energy. The resulting local fieldu(RW ) is the
energy of an atom at a given pointRW due to all other atoms
of the system.

III. CLASSICAL KINETIC MODEL

The calculations are described in Sec. III A and the res
are given inside the cluster core in Sec. III B and in t
interfacial region in Sec. III C. The resulting dynamic beha
ior is also related to the position and velocity correlati
functions~Sec. III D!.

A. Fokker-Planck equation

The classical description of the phase space dynamics
lows the well-known differential equation, usually called t
Fokker-Planck~FP! equation:

]G

]t
5

j

m
F3G1

kT

m

]

]vW

]

]vW
G 1vW •

]

]vW
GG2vW •F ]

]RW
GG

1
1

m

]u

]RW
•

]

]vW
G.

As discussed in Ref.@16#, the truncated linear equations fo
the first three moments are
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]t
52

]

]RW
• jW, ~1a!

] jW

]t
52

j

m
jW 2

]

]RW
T& 2

f

m
•

]

]RW
u, ~1b!

]T&

]t
52

2j

m
T& 1

2jkT

m2
f E& 2

jW

m

d

dRW
u. ~1c!

The friction coefficientj also controls the diffusion in posi
tion through the Einstein relation. The particle mass ism.
Each higher moment decays to the stationary solution wit
faster relaxation time than the moment before. The infin
hierarchy is truncated if the viscosity terms contained in
energy flux tensor̂ vW vW vW & are not considered.E& is the unit
tensor. The probability densityf (RW ,t) is the probability of
finding a particle that started atRW 0 at pointRW after a timet.
The flux jW(RW ,t)5 f (RW ,t)vW (RW ,t) measures the average velo
ity vW (RW ,t) of the particle at that point. The kinetic tenso
T̂(RW ,t) is a measure of the local pressure tensor. These q
tities depend on the initial condition of the particle. On ta
ing the average of Eqs.~1! in all possible initial positionsRW 0
and velocitiesvW 0 , the system average density, average vel
ity, and pressure tensor are obtained. From Eqs.~1!, the sta-
tionary solution for the average densityn(RW ) and kinetic
tensorTeq is given by setting all time derivatives equal
zero, which leads to

T&eq~RW !5n~RW !
kT

m
E& ,

]

]RW
n~RW !1n~RW !

]

]RW

u~RW !

kT
50. ~2!

The first relation follows from Eq.~1c! and the second from
Eq. ~1b!. From Eq. ~1a! the average flux vanishes in th
equilibrium state. An equilibrium cluster size exists if th
pressure difference in the liquid vapor interface is balan
by the surface curvature forces@20#, producing a stationary
aggregate of constant radius. The time independent solu
must correspond to a system of constant chemical pote
(]/]RW )m(RW )50 and, using the Gibbs-Duhem relation, co
stant pressure. As discussed in Ref.@19#, the limit of thermo-
dynamic equilibrium thus defines the mean fieldu(R) in Eq.
~2! as the change in the internal energyU if a particle is
added or removed atR:

u~RW !5
dU

dn~RW ,t !
5m~RW !2kT lnn~RW !, ~3!

wheredF/dn(RW ,t)5m(RW ) is the local chemical potential o
equilibrium density functional theory@10#. For the equilib-
2-2
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rium cluster of radiusac , the capillary pressure of the curve
surface balances the external pressure difference, and th
ear approximation yields@21#

R,ac: u~R!5uL,

R.ac: u~R!5u02Qe2R/ l c/R

whereQ52s/n0 . The system parameters ares, the surface
energy; l c, the density correlation length; andu0(uL), the
mean field in the bulk vapor~condensed core!.

The dynamics will be studied in the following for th
almost stationary@8,15,22# cluster of radiusa'ac close to
the equilibrium value.

B. Inside the core

Inside the core, the density is constant@15# and the force
field vanishes. The particles move essentially as free
ticles in a bulk ‘‘liquid’’ phase. The exact solution for th
field free FP equation is known@16,17# and the moments ca
be calculated. In order to test the alternative approach
scribed above, Eqs.~1! are solved directly by the three

dimensional Fourier transformationyq̃5*dRW e2p iqW RW y(RW ),
yielding

] f q

]t
52p iqW jWq ,

] jW q

]t
52

j

m
jW q12p iqW T&q , ~4!

]T&q

]t
52

2j

m
T& q1

2kTj

m2 f qE& .

The solution of the equation for the kinetic tensor is given
an adiabatic approximation:

T&q5
kT

m
f q1 f qS vW 0vW 02

kT

m De22ct5F& f q . ~5!

This approximation for the dynamics of the kinetic tensor
valid, since the time decay for the flux is more rapid than t
of the density. The dynamics of the atoms can be stud
relative to the time scalec215m/j. The kinetic tensor is
independent of time forct!1 and ct@1, the solution is
simply of the formevt and the corresponding solutions fo
eachv are calculated from the system of equations by use
the initial conditions for the probability, the average veloci
and the kinetic tensor att50. The particle starts from the
center of the cluster with a given velocity andf q51, j̄ q

5vW 0 , T̂q5vW 0vW 0 . For jt/m!1, the probability distribution
remains sharply localized around the initial position at
center of the cluster and shows slow broadening through
locity mediated motion:
04160
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f ~RW ,t !5F 3m2

2kTjtp G3/2

3expF2
3m2

2kTjt
S RW

t
2vW 0D 2G ——→

t→0

1

t3 dS RW

t
2vW 0D .

The flux is determined by the initial velocity flow:

jWq5 f qvW 0e2~jt/m!.

For jt/m@1, the pressure tensor dominates. The probab
is diffusive:

f ~RW ,t !5F 1

4pDtG
3/2

expF2
RW 2

4Dt
G ,

with effective diffusion constantD5kT/j. A late stage prob-
ability flux is found to be

jW~RW ,t !52
kT

j

d

dRW
f ~RW ,t !,

which acts as a drift velocity away from the areas of lar
density.

C. In the interfacial region

In the narrow region close to the cluster surfaceR'a and
1/R'1/a and to the lowest order in 1/a, the internal field
gradient is approximated by a constant force within the n
row interfacial zone as given byskT5du(R)/dR
'Qe2a/ l c/a2. A constant gradient approximation is require
for an analytical solution within the core and may overes
mate the spatial decay of the probability density and the fl
It can be justified by the effective field term, which, as se
in Eq. ~1b!, is multiplied by the rapid decay of the probabi
ity to find a particle at a point beyond the cluster surface
which it started. Equations~1! for the moments can be solve
by the one-dimensional Fourier transformationy(q)
5*d Re2piqRy(R) of the coefficients of the expansion i
spherical harmonics:

f ~RW ,t !5(
L,M

bLM~R,t !YLM~w,u!,

jW~RW ,t !5(
L,M

aW LM~R,t !YLM~w,u!,

T̂~RW ,t !5(
L,M

ûLM~R,t !YLM~w,u!.

The set of linear equations is

]bL~q!

]t
52p iq(

L8
zWLL8aW L8~q!,

~6!
]aW L~q!

]t
52

j

m
aW L~q!

1(
L8

zWLL8S 2p iqûL8~q!2
skT

m
bL8~q! D ,
2-3
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]ûL~q!

]t
52

2j

m
ûL~q!1

2j

m2 kTbL~q!E&

2
skT

m (
L8

zWLL8aW L8~q!.

The z axis is chosen in the direction of the initial positio
vector RW 0 and only theM50 components are retained fo
simplicity. Coupling between coefficients of different ang
lar momentum now occurs due to the local field:

zWLL85E dw sinu du YL0~w,u!YL80~w,u!eWR ,

where the basis vectors in the local polar coordinate sys
eWR , eWw , and eW u are introduced. The kinetic tensor is aga
given by Eq.~5! with more rapid decay of the flux than th
density andûL5F̂bL . The remaining equations are solve
using the expansion in two harmonics,L50, 1, to illustrate
the main results. In order to study flow along the radial a
circular directions defineaL5aW L•eW z , the current along the
initial radial direction, andaW L3eW z , the current in the circular
direction around the cluster. The circular fluxjW3qW follows a
field free equation and decays rapidly:

aW L3eW z5vW 03eW ze
2jt/m.

The remaining set of four equations fora0 , a1 , b0 , b1 can
be solved in the method used inside the cluster in the lim
ct,1 andct.1 and the four frequencies are found from t
condition of vanishing determinant. The initial conditions a
a fixed initial position on the cluster surface and a fix
initial velocity:

a05vW 0•eW z

e2p iqa

a2 5a1 , b05
e2p isa

a2 5b1 .

For jt/m!1, the probability density and the flux are th
same as inside the cluster with a tendency to linger at
initial position. Forjt/m@1, the coupling terms cannot b
neglected. The result for the probability density is

f ~RW ,t !a25F12
m

3j
vW 0•eW z

d

dRGF 3

4pDtG
1/2

3expF2

3S R2a1st
D

3 D 2

4Dt
G @Y001Y10~u!#

and for the flux

jW~RW ,t !•eW za
252

D

3 S ]

]R
1sD F 3

4pDtG
1/2

3expF2

3S R2a1st
D

3 D 2

4Dt
G @Y001Y10~u!#.

The probability is diffusive with a shift into the cluster wit
time and a late stage contribution to the average velo
04160
m
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e

ty

field from the radial surface pressure field. A tendency
radial symmetry with time is not found.

D. Position and velocity correlation

More information on the dynamics of the atoms follo
from the mean square displacement MSD

rMSD
2 5E

RW 0

RW f dRW f ~RW ,t !~RW 2RW 0!2

and the velocity correlation

hcor
2 5

E
RW 0

RW f dRW *dvW 0f ~RW ,t !vW 0vW ~RW ,t !expS 2
mvW 0

2

2kT
D

E
RW 0

RW f dRW *dvW 0f ~RW ,t50!vW 0vW 0 expS 2
mvW 0

2

2kT
D ~7!

calculated for the initialRW 0 at the center and finalRW f position
at the core surface and for the initialRW 0 at the core surface
and final RW f position at`. Size effects due to the cluste
surface at a can be neglected in the range of time stu
(Dt/a2!1). Initial behavior and long time behavior are ea
ily calculated. Inside the cluster core after a timem/j, FP
results in complete loss of velocity correlation and for t
MSD a transition from dynamical motion int2 to diffusive
motion linear in time~also found directly from the FP equa
tion @16#!. In the interfacial region, the MSD is nonlinea
and, due to the initial velocity, quadratic in time forct!1.
The velocity correlation demonstrates a rapid initial exp
nential decay and a long time exponential with persistenc
correlation due to the surface force field.

IV. KINETIC EQUATION WITH CONSTRAINTS

The kinetic equations for a dense fluid are based on
intuitive analysis of the nature of the random processes.
FP equation uses the assumption that the average path
lows the classical equation of motion in the force field an
as discussed in Refs.@16,17#, may not apply to events hap
pening at times shorter thanm/j. The present problem pro
vides a unique opportunity to test a fundamental kine
theory by the confrontation of the results on the dynamics
the cluster.

The proposed model is introduced in Sec. IV A and t
results are given inside the cluster core in Sec. IV B and
the interfacial region in Sec. IV C. The resulting dynam
behavior is related to the position and velocity correlati
functions~Sec. IV D! and is compared with the FP solutio
as well as the molecular dynamics simulation.

A. Persistence of velocity

To describe motion in phase space, the model incorpor
the idea suggested long ago@23# that single atom paths hav
a tendency to follow the classical path and show persiste
in the direction of velocity@24#. This is often observed in
molecular dynamics simulation on liquids and gases. Det
of the calculation are given in Ref.@24#. The resulting kinetic
2-4
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equation combines evolution of the probability by diffusio
in position as well as in velocity@17,19,25#,

]G

]t
5

kT

2cb
F3m

kT
G1

]

]vW

]

]vW
G 1

m

kT
vW •

]

]vW
GG

2vW •F S ]

]RW

u

kTD G1
]

]RW
GG

1
kT

2cd
F S ]

]RW

]

]RW

u

kTD G1
]

]RW

]

]RW
G

1S ]

]RW

u

kTD S ]

]RW
GD G .

As before, the set of differential equations for the mome
of G is found. The relevant system of equations for the pr
ability density, the average velocity, and the kinetic ten
are

] f

]t
52

]

]RW
• jW 1

kT

2cd
F ]

]RW
•

]

]RW
f 1

]

]RW

u

kT
•

]

]RW
f

1 f
]

]RW
•

]

]RW

u

kTG , ~8a!

] jW

]t
52

m

2cb

jW 2
]

]RW
T̂2T̂•

]

]RW

u

kT
1

kT

2cd
F ]

]RW
•

]

]RW
jW

1
]

]RW

u

kT
•

]

]RW
jW 1 jW

]

]RW
•

]

]RW

u

kTG , ~8b!

]T̂

]t
52

m

cb
T̂1

kT

cb
f E& . ~8c!

In Eqs.~8!, the square brackets replace the collision terms
an interacting fluid and play an important role in the init
stage of the dynamics. In the effective continuity equat
~8a!, usually called the Smoluchowski equation in the lite
ture@19# the total variation of the probability is caused by t
drift regulated by the entropy gradientd ln f/dR, which tends
to disperse the atoms as well as by a field directed t
du/dR and includes a possible velocity field of the sing
particles. The equilibrium solution of Eqs.~8! is again given
by Eq. ~2!, andu(R) must thus be given by Eq.~3!.

After an average in all possible initial positions and v
locities, the mean velocity field becomes the average par
flux J(R,t) and, using Eq.~3!, the dynamic equation for the
density is obtained@9#:

]n~RW ,t !

]t
52

]

]RW
•JW~RW ,t !1

kT

2cd
F ]

]RW
•n~RW ,t !

]

]RW

m~RW !

kT
G .

Equation~8c! for the kinetic tensor is as in the FP theor
After averaging initial position and velocity, the tensor ra
04160
s
-
r

f

n
-

m

-
le

-

idly tends to be diagonal and given by the average kine
energy kTn(R,t)/m. The characteristic time is here 1/c
52cb /m. Similarly, the probability flux equation~8b! con-
tains the Navier-Stokes terms for the flow field of visco
fluids of constant density. As in Eqs.~1!, the viscosity terms
that arise from the energy flux tensor will not be conside
and the infinite hierarchy is truncated. Using Eq.~3!, the
dominant terms for the stationary flux in a nonviscous flu
give

m

2cb

JW ~RW ,t !52
kT

m
n~RW ,t !•

]

]RW

m

kT
.

On inserting in the equation for the density evolution, t
Cahn Hilliard model of nucleation@3# is recovered for times
ct@1. The same result applies as well to the long time so
tion of the FP equations~1!.

The dynamics near a sufficiently large cluster of rad
close to the critical equilibrium value is calculated in th
following. The same method and approximations used pre
ously in the FP approach are applied.

B. Dynamics of atoms within the cluster core

Inside the dense core, the density is constant and the m
field is uniform. As in the previous paragraph, the intern
field is fully compensated and does not contribute to
motion. This case was calculated previously and revea
different behavior as a function of time relative to a chara
teristic time@24# 1/c52cb /m. It is reconsidered to test th
method. The three-dimensional Fourier transformation of
kinetic equations yields a linear system of first-order diffe
ential equations:

] f q

]t
52p iqW jWq1

kT

2cd
~2p iqW !2f q ,

] jWq

]t
52

m

2cb
jW q12p iqW T̂q1

kT

2cd
~2p iqW !2 jWq , ~9!

]T̂q

]t
52

m

cb
T̂q1

kT

cb
f qE& .

In the adiabatic approximation, the solution of the equat
for the kinetic tensor is again@as in Eq.~5!#

T̂q5
kT

m
f q1 f qS vW 0vW 02

kT

m De22ct5F̂ f q .

The kinetic tensor is independent of time forct!1 andct
@1 and the solution is simply of the formevt. The relax-
ation timev is found for vanishing determinant of the linea
system of equations by use of the initial conditions for t
probability, the flux, and the kinetic tensor att50.

For ct!1, F(t)5vW 0vW 0 , the kinetic tensor is dominate
by the initial motion and the flux is determined by the initi
velocity flow:

jW~RW ,t !5 f ~RW ,t !vW 0e2ct

and the probability density is diffusive:
2-5
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f ~RW ,t !5F cd

2pkTtG
3/2

expF2
cdRW 2

2kTt
G .

For ct@1, the initial motion is lost. The kinetic tensor ha
spherical symmetry as determined by the equilibrium pr
sure tensor and the problem can be simplified by study
the flux parallelj i and perpendicular to the wave vectorqW .
Immediately, the perpendicular component is found to foll
free motion and

jW3qW 5qW 3vW 0e2ct expF ~2p iqW !2
kTt

2cd
G→0.

The remaining vectorzW5( f ,j i) must fulfill the set of equa-
tions dzW /dt5MzW with the tensor

M5F Lq 22p i

22p iqW 2F̂ Lq2cG
and

Lq5
kT

2cd
~2p iqW !2.

The eigenvalues are easily found from det(M2vE)50 to
be

v152c1Lq2
~2p i !2

c
qW F̂qW , v25Lq1

~2p i !2

c
qW F̂qW .

The results are given in Fig. 1. It is found that the moti
proceeds along a radial direction as produced by the ra
pressure gradient. The average velocity is caused solel
the need to achieve the equilibrium state of a uniform pr
ability density

FIG. 1. For the cluster of radiusa, the probability distributionf
and radial average velocityj for the particles that started at the co
center and evolved within the cluster core as a function of dista
x5R/a to the core at a timet54. The core diffusion coefficient is
831023, the friction decay timec2150.8, the radiusa55. Mo-
lecular dynamic units MDU are used (t54.4310213 s, s53.4
31028 cm: T585 K, kT/m53.331022, a55, effective surface
field as512.5).
04160
-
g

ial
by
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jW~RW ,t !52
kT

mc

d

dRW
f ~RW ,t !.

The probability distribution is diffusive as well as flow d
rected and the long time effective diffusion constant is
creased to

D5
2kTcb

m2 1
kT

2cd

and

f ~RW ,t !5S 12
vW 0

c
•

d

dRW
D F 1

4pDt
G 3/2

expF2
RW 2

4Dt
G .

The results of the previous solution of Eqs.~8! are recovered
@24#

C. Dynamics of atoms within the interfacial region

Equations~8! for the probability, the flux, and the kineti
tensor can be solved by expansion in the spherical harm
ics:

f ~RW ,t !2(
L,M

bLM~R,t !YLM~w,u!,

jW~RW ,t !5(
L,M

aW LM~R,t !YLM~w,u!,

T̂~RW ,t !5(
L,M

ûLM~R,t !YLM~w,u!.

The one-dimensional Fourier transformation

y~q!5E d Re2p iqR y~R!

leads again to a system of first-order differential equation
the coefficients of the expansion:

]bL~q!

]t
5~2p iq2s!(

L8
zWLL8aW L8~q!1

kT

2cd
F ~2p iq !2

22p iqS s1
2

aD2
L~L11!

a2 GbL~q!,

]aW L~q!

]t
52

m

2cb
aW L~q!1~2p iq2s!(

L8
zWLL8ûL8~q!

1
kT

2cd
F ~2p iq !222p iqS s1

2

aD
2

L~L11!

a2 GaW L~q!,

]ûL~q!

]t
52

m

cb
ûL~q!1

kT

cb
bL~q!E& . ~10!

e
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The z axis is chosen in the direction of the initial positio
vector RW 0 and only theM50 components are retained fo
simplicity. Coupling between coefficients of different ang
lar momentum again occurs due to the local field:

zWLL85E dw sinu duYL0~w,u!YL80~w,u!eWR .

The equation for the kinetic tensor is unchanged and ag
the linear solution is used,ûL5F̂bL , so that

]aW L~q!

]t
52

m

2cb
aW L~q!1~2p iq2s!(

L8
zWLL8F̂bL8~q!

1
kT

2cd
F ~2p iq !222p iqS s1

2

aD
2

L~L11!

a2 GaW L~q!. ~11!

The dynamics is complex, as the coupling between
modes of differentL become important but due to the te
dency to conserve angular momentum, the modes ofL.0
decay as

expF2
L~L11!

a2 G kTt

cd

and a limited expansion is justified here. To illustrate the c
of a two-mode system,L50, 1 is given. WithaW L5aW L•eW z ,
the current along the initial radial direction andaW L3eW z , the
current in the circular direction around the cluster, the se
four equations fora0 , a1 , b0 , b1 can be solved in the
method used inside the cluster in the limitsct,1 and ct
.1 and the four frequencies are found from the condition
vanishing determinant. The systems$a0 ,b1% and$a1 ,b0% are
decoupled. The initial conditions are a fixed initial positio
on the cluster surface and a fixed initial velocity:

a05vW 0•eW z

e2p iqa

a2 5a1 b05
e2p isa

a2 5b1 .

The results are shown in Fig. 2.
For ct!1, the result for the probability density is

f ~RW ,t !a25F 1

4pD0t G
1/2

expF2

FR2a1S s1
2

aD kTt

2cd
G2

4D0t
G

3FY001Y10~u!expS 2
kTt

cda2D G ,
with an effective diffusion constant,D05kT/2cd . Atoms
starting on the surface show a tendency to be drawn into
cluster by the capillary pressure term. The probability sho
04160
in

e

e

f

f

e
s

a slow decay with time towards radial distribution of sphe
cal symmetry.

The particle flux and the kinetic tensor are dominated
the initial velocity: jW(RW ,t)5 f (RW ,t)vW 0e2ct. The loss of the
initial velocity follows the usual exponential decay with
characteristic timec21.

For ct@1, the effect of the surface is important. An add
tional relaxation time can be seen to appear due to the
face force field, which enhances the drift of atoms in t
radial direction:

f ~RW ,t !a25F12
1

c
vW 0•eW zS d

dR
1sD GF 1

4pD1t G
1/2

3expF2

FR2a1S s1
2

aD tS kT

2cd
1

4kTcb

3m2 D G2

4D1t
G

3FY001Y10~u!expS 2
kTt

cda2D G2

.

The effective diffusion constant is increased:

D15
2kTcb

3m2 1
kT

2cd
,

the numerical factor of 3 inD1 being a result of the limited
expansion in spherical harmonics.

The effect of the surface is also visible in the avera
velocity dominated by the response to the total external fie

FIG. 2. For the cluster of radiusa, probability distributionf and
average velocityj in the direction of the initial position vector fo
the particles that started at the core surface and evolved within
cluster interface as a function of distance to the surfacex5R/a
21 at a timet54. The diffusion coefficient in the interface is
31022, the friction decay timec2151.1, the effective surface field
as512.5, the radiusa55 ~MDU as in Fig. 1!.
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2kTcb
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The radial flux persists with a relaxation given by

expF2

tS s1
2

aD 2S kT

2cd
1

4kTcb

3m2 D 2

4D1

G .

The initial circular flow is not coupled to the density an
vanishes rapidly due to the friction forces:

jW~RW ,t !3eW za
25vW 03eW zF 1

4pD0t G
1/2

3expF2

FR2a1S s1
2

aD kTt

2cd
G2

4D0t
G

3F11Y10~u!expS 2
kTt

cda2D Ge2ct→0.

D. Correlation functions

Inside the cluster core, the coupling between position
velocity in the persistent diffusion model leads to a line
time dependence for the MSD with an increase in diffus
constant and total loss of velocity correlation after a tim
c21. In the interfacial region, the MSD in both kinetics
nonlinear and initially quadratic in time, but the cause
different, arising from velocity effects in the FP rather th
due to accelerated motion by the surface pressure gradie

FIG. 3. The mean square displacement~MSD! as a function of
time within the core~ m ! and the interface~—! for the
parameters of Figs. 1 and 2. The results of the molecular dyna
simulation in the core~--m--! and interface~• • • •! are shown for
comparison@15# ~MDU as in Fig. 1!.
04160
d
r
n

in

the present model. The velocity correlation in both kinet
demonstrates a rapid initial exponential decay and a l
time exponential drop with persistence of correlation due
the surface force field~Figs. 3 and 4!.

A comparison to molecular dynamics provides a test
the hypothesis on which kinetic equations are based. To c
pare with the kinetic theory, the simulation results for t
MSD and the velocity correlation are also given in Figs.
and 4. Qualitative agreement is found. Quantitative agr
ment is hampered by lack of independent values for the
fusion constant and the friction constant in the interface,
though these could be calculated in the method of Ref.@16#
or determined from the simulation.

V. CONCLUSIONS

In the proposed kinetic model, the following picture fo
the average motion of a particle inside a sufficiently lar
condensing cluster is revealed. For atoms starting at the
ter of the aggregate with a given velocity, the average vel
ity initially follows the initial direction but decays rapidly
due to onset of diffusive motion, as does the initial kine
tensor that directs the motion along the initial velocity. Wi
time, entropy dominates as the directing force for the pr
ability flow and the motion is accelerated by the tendency
smooth out the nonuniform probability density. The resu
for a particle starting on the cluster surface demonstrat
gradual loss of initial flow and directed radial motion of th

cs

FIG. 4. The velocity correlationVCOR as a function of time in
the interface~—! for the parameters of Figs. 2 and 3. The sh
(ct!1) and long (ct@1) time behavior are plotted separately, th
sum is shown as~111!. The results of the molecular dynamic
simulation ~• • • •! are shown for comparison@15# ~MDU as in
Fig. 1!. The initial velocity is radial into the core center.
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atoms into the cluster due to the favorable chemical poten
gradient near the cluster surface. The random thermal mo
lessens the directed flow and causes the tendency to sph
symmetry with time. A cluster surface is thus found to
surrounded by a narrow zone of capture where particle
tion is affected by the cluster field and the need to enter
new stable phase. Outside this zone, motion is mainly di
sive.

Similar effects occur in the classical Fokker-Planck a
proach for the properties, parameters, and time scales e
ined. In both approaches, the long and short time correla
functions are in qualitative agreement with the molecu
dynamics simulation on an Argon cluster. A picture of t
dynamics of atoms emerges, which is universal and indep
dent of an interaction model. Metal clusters are of imp
tance in applications; it would be interesting to explore
importance of the electronic contribution to the dynamics
a nucleating metal cluster, possibly using the embedded a
potential already applied to wetting@26#.

Atomic scale physics explores theoretically or experim
tally the underlying atomistic processes of a phase transit
aggregation, diffusion, coalescence, and dissolution, wh
determine the morphology and characteristics of the sys
at a given instant of time. The crucial question remains
cess to nonequilibrium properties. The method presen
na

-

m

n
st

y

04160
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here folds atomistic understanding into a mesoscopic form
lation in terms of average density, flux, and stress tensors
can be compared directly to experiment and molecular
namics. Collective behavior is captured on this scale an
embedded in a continuum mechanics approach. The m
field approach of density functional theory is extended
nonequilibrium systems to include effects of flow fields a
variations in pressure and temperature. Experiments
simulation can benefit from the guidance provided by
analytical modeling, and the analytical theory is useful
applied science, as it is detached from a specific given
terial. The method is of interest and could be used in ot
nanosystems. The assumptions of the model are not lim
to atomic systems and are pertinent to cluster formation
suspensions@27#.

The presence of characteristic flow fields in the vicinity
nucleating clusters was suggested long ago@28# and may be
expected to play an important role in the doping of clust
@29#, in coalescence@30,31#, for deposition near a surface
notably in electrochemical deposition@32#.
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